INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2015-16 Statistics - II, Backpaper Examination

Answer all questions

Maximum Marks: 50

[15]

1. Let X_1, \ldots, X_n be independent random variables with densities

$$f_{X_i}(x_i|\theta) = \begin{cases} \frac{1}{2i\theta} & \text{if } -i(\theta-1) < x_i < i(\theta+1); \\ 0 & \text{otherwise,} \end{cases}$$

 $1 \leq i \leq n$, where $\theta > 0$.

(a) Find a two-dimensional sufficient statistic for θ .

(b) Find the maximum likelihood estimator of θ .

2. Consider a random sample from $N(0, \sigma^2)$.

(a) Find the UMVUE of σ .

(b) Show that the UMVUE of σ is a consistent estimator.

(c) Find the asymptotic distribution of the UMVUE of σ . [12]

3. Suppose X_1, X_2, \ldots, X_n is a random sample from $Poisson(\lambda)$. Consider testing

$$H_0: \lambda \leq 1$$
 versus $H_1: \lambda > 1$.

(a) Show that the conditions required for the existence of a UMP test are satisfied here.

(b) Derive the UMP test of level α . [8]

4. A large shipment of parts is received, out of which 5 are tested for defects. Let X denote the number of defective parts in the sample, and θ be the proportion of defective parts in the population. From past shipments it is known that θ has a Beta(1, 9) distribution.

(a) Find the HPD estimate of θ if x = 0 is observed.

(b) Find a 95% credible set for θ if x = 0 is observed.

(c) For testing $H_0: \theta \leq 0.10$ versus $H_1: \theta > 0.10$, find the posterior odds ratio. [15]